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Ángel F. Adames6

University of Michigan, Ann Arbor, MI7

Amin Dezfuli8

Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and

Science Systems and Applications, Inc., Lanham, Maryland

9

10

John Fasullo11

National Center for Atmospheric Research, Boulder, CO12

Peter J. Gleckler13

Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National

Laboratory, Livermore, CA

14

15

Jiwoo Lee16

Generated using v4.3.2 of the AMS LATEX template 1

Early Online Release: This preliminary version has been accepted for publication in Journal 
of Climate, may  be  fully  cited,  and  has  been  assigned  DOI  he final 
typeset copyedited article will replace the EOR at the above DOI when it is published. 
 
© 20 ological Society 

 T

20 American Meteor

10.1175/JCLI-D-19-0956.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-19-0956.1/4961729/jclid190956.pdf by LAW
R

EN
C

E LIVER
M

O
R

E LAB. user on 02 July 2020



Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National

Laboratory, Livermore, CA

17

18

Wei Li19

IMSG at Environmental Modeling Center, National Centers for Environmental Prediction

(NCEP)/National Weather Service (NWS)/National Oceanic and Atmospheric Administration

(NOAA), College Park, MD

20

21

22

Larissa Nazarenko23

CCSR, Columbia University, New York, NY and NASA Goddard Institute for Space Studies, New

York, NY

24

25

Gavin A. Schmidt26

NASA Goddard Institute for Space Studies, New York, NY27

Kenneth R. Sperber28

Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National

Laboratory, Livermore, CA

29

30

Ming Zhao31

Geophysical Fluid Dynamics Lab, Princeton, NJ32

∗Corresponding author address: Clara Orbe, NASA Goddard Institute for Space Studies, 2880

Broadway New York, NY 10025

33

34

E-mail: clara.orbe@nasa.gov35

2

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0956.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-19-0956.1/4961729/jclid190956.pdf by LAW
R

EN
C

E LIVER
M

O
R

E LAB. user on 02 July 2020



ABSTRACT

We compare the performance of several modes of variability across six US

climate modeling groups, with a focus on identifying robust improvements in

recent models (including those participating in the Coupled Model Intercom-

parison Project (CMIP) Phase 6) compared to previous versions. In particu-

lar, we examine the representation of the Madden-Julian Oscillation (MJO),

the El Niño/Southern Oscillation (ENSO), the Pacific Decadal Oscillation

(PDO), the Quasi-Biennial Oscillation (QBO) in the tropical stratosphere and

the dominant modes of extra-tropical variability, including the Southern An-

nular Mode (SAM), the Northern Annular Mode (NAM) (and the closely

related North Atlantic Oscillation (NAO)), and the Pacific-North American

Pattern (PNA). Where feasible, we explore the processes driving these im-

provements through the use of “intermediary” experiments that utilize model

versions between CMIP3/5 and CMIP6 as well as targeted sensitivity exper-

iments in which individual modeling parameters are altered. We find clear

and systematic improvements in the MJO and QBO and in the teleconnection

patterns associated with the PDO and ENSO. Some gains arise from better

process representation, while others (e.g. the QBO) from higher resolution

that allows for a greater range of interactions. Our results demonstrate that

the incremental development processes in multiple climate model groups lead

to more realistic simulations over time.
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1. Introduction56

Around the world, and certainly in the United States, climate and weather model groups have57

been upgrading their codes for operational purposes and/or for contributions to new international58

projects (such as the Coupled Model Intercomparison Project Phase 6 - CMIP6 (Eyring et al.59

2016)). Preliminary analysis of these new model versions – both published (Del Genio et al.60

2015; Rind et al. 2014; Golaz et al. 2019; Danabasoglu et al. 2020) and unpublished – has shown61

some remarkable increases in the fidelity of representation of important modes of variability. Most62

notably, representations of the Madden-Julian Oscillation (MJO), the Quasi-Biennial Oscillation63

(QBO) and patterns associated with the El Niño/Southern Oscillation (ENSO) have greatly im-64

proved relative to model versions of only a few years ago.65

This raises important scientific questions: what were the processes involved in this increase66

in skill? What is the balance between increases in vertical or horizontal resolution versus new67

physics or better tuning? Can we better predict the impact of climate change on these modes or68

interactions between them? The salience of these questions is increased by the upcoming IPCC69

6th Assessment report, which will report on model evaluations and projections in 2021.70

This paper reports on an in-depth comparison across all six US climate modeling centers (Ta-71

ble 1). Compared to broader comparisons across the CMIP archive this study has an advantage72

in that we are able to dig deeper into intermediate versions of models that have not been included73

in CMIP6 and encompasses two groups that do not contribute to CMIP since they are focused74

on shorter prediction windows (weather to sub-seasonal variability). Intermediate model versions75

are analyzed for select modes for which the simulation duration is of sufficient length to charac-76

terize the mode in question. Within these analyses, we focus on a) using consistent and robust77

diagnostics across all modes and models (atmospheric and coupled), b) attempting to track down78
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the reasons for model skill improvements, and c) identifying continuing and persistent systematic79

biases.80

a. History81

The inclusion of dynamic variability in the climate system has been the goal of general circu-82

lation modeling since the beginning (e.g. Phillips 1956; Manabe and Bryan 1969; Hansen et al.83

1983). Some modes, which are dependent on the largest scale features of the synoptic circula-84

tion, such as the North Atlantic Oscillation (NAO) (or the closely related Northern Annular Mode85

(NAM)), and the Southern Annular Mode (SAM), have been represented in all models. For other86

modes of variability, however, it has long been recognized that they rely on wave motions or87

specific climate features that were not resolvable using the horizontal and vertical discretizations88

and/or configurations achievable in early generations of models.89

Developments since then, and particularly within the CMIP process, have clearly identified nec-90

essary (though not sufficient) requirements for models to realistically exhibit specific modes of91

variability. An obvious example is the simulation of ENSO which, at minimum, requires suffi-92

cient resolution to resolve the equatorial Kelvin wave guide in the Pacific ocean (Kang and An93

1998). Models with ocean components without sufficient resolution will exhibit tropical variabil-94

ity, but the magnitude and transient structure of that variability will not be realistic (Russell et al.95

1995; Clement et al. 2011). Similarly, the capacity to produce a QBO relies on sufficient vertical96

resolution in the lower stratosphere (∼ 500 m) (Geller et al. 2016).97

For some modes though, resolution plays little role. For example, the inability of models to98

produce an MJO had long been a puzzle until the early successes of Inness et al. (2003), among99

others. For this mode, the key issues revolved around simulating the processes of convection and100

the tropical boundary layer sufficiently well to prevent excessive mixing (e.g., Kim et al. 2012).101

5
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This is similar to representations of the Pacific Decadal Oscillation (PDO), whose status remains102

ambiguous - is it the decadal expression of ENSO, or something driven independently? Or is103

it mainly a statistical description (Newman et al. 2016)? There are no obvious resolution-based104

reasons to expect (or not) the presence of a realistic PDO, and yet, model representations have105

historically been very diverse.106

The lack of any obvious barriers to simulations of these last two modes has led some to speculate107

that new physics or radical new approaches might be needed to improve their representation in108

models. Meanwhile, the ’normal’ development of general circulation models (GCMs) (in the109

Kuhnian sense) has proceeded apace. The extent to which significant improvements have been110

made will be a testament (or not) to our increasing understanding of the climate system.111

b. Scope112

There have been far too many modes of variability identified in the literature for our analysis to113

be comprehensive, so our focus will be on the principal, well-recognized modes that have been114

robustly identified in the modern climate record. In the tropics, this includes coupled modes115

like ENSO, the PDO, and the MJO as well as the primarily atmospheric QBO in the tropical116

stratosphere. In the extra-tropics, this includes the NAO/NAM, SAM, and Pacific-North American117

Pattern (PNA) patterns. While we consider all seasons we focus primarily on those during which118

these modes are dominant (i.e. December-January-February (DJF) for the NAO/NAM, PNA, and119

ENSO; and June-July-August (JJA) and DJF for the SAM).120

Note that, while here we distinguish between the NAM and the NAO, there have been different121

perspectives on their relationship (see Thompson et al. (2003) and references therein). Various122

studies suggest they are indistinguishable (Wallace 2000; Feldstein and Franzke 2006; Dai and123

Tan 2017), connected (e.g., Thompson and Wallace (1998); Gong et al. (2002); Cohen and Barlow124

6
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(2005); Cohen et al. (2005); Stephenson et al. (2006); Rivière and Drouard (2015); Song (2019)),125

independent (e.g., Ambaum et al. (2001); Deser (2000)), or mixed by season (Rogers and McHugh126

2002). In this paper, however, we diagnose the NAM and NAO separately in order to provide both127

regional and hemispheric perspectives on northern extratropical variability. For ENSO and the128

PDO, in addition to the spatial patterns and teleconnections we also consider spectral behaviour.129

2. Models and Analysis130

We primarily use coupled atmosphere-ocean simulations together with a few historical131

atmosphere-only (AMIP) (Gates et al. 1999) simulations. For those models submitting to CMIP6132

(e.g, CESM, ModelE, E3SM) these experiments correspond to the “Historical” experiment (Eyring133

et al. 2016). Other simulations analyzed were obtained directly from modeling groups (e.g. the134

Goddard Earth Observing System (GEOS) and Global Ensemble Forecast System (GEFS) sub-135

seasonal forecasts). The type and number of ensemble members per model submission considered136

here varies, as described in more detail below and in Table 3. We examine both current versions of137

the model as well as prior versions and selected development versions when available and relevant.138

a. Model Descriptions139

The salient details for the models used in this study (e.g., model components, resolution, param-140

eterizations) are summarized in Table 2. Here we briefly describe the models utilized in this study,141

directing readers who seek full details to the references described herein.142

Four versions of the Community Earth System Model (CESM) were used in this analysis:143

CESM1 (using the Community Atmosphere Model (CAM) version 5), CESM1 (using the Whole144

Atmosphere Community Climate Model (WACCM) Version 5), CESM2 (using CAM6), and145

CESM2 (using WACCM6), which are documented in Hurrell et al. (2013a), Mills et al. (2017),146

7
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Danabasoglu et al. (2019), and Gettelman et al. (2019), respectively. The U.S. Department of En-147

ergy (DOE) Energy Exascale Earth System Model (E3SMv1) (Golaz et al. 2019) branched from148

the CESM1 model, but has evolved significantly (Rasch et al. 2019; Xie et al. 2018). Five ver-149

sions of the NASA Goddard Institute for Space Studies (GISS) ModelE were included as well,150

two from CMIP5 (E2-R and E2-H (Schmidt et al. 2014)) and three CMIP6 versions (E2.1-G and151

E2.1-H (Kelley et al. 2020) and E2.2-G (Rind et al. 2020)). The -G (-R in CMIP5) and -H indi-152

cate two different ocean models. Finally, three Geophysical Fluid Dynamics Laboratory (GFDL)153

models were used: CM3 (Griffies et al. 2011; Donner et al. 2011), CM4 (Held et al. 2019; Zhao154

et al. 2018a,b) and ESM4 (Dunne et al. 2020). We also reference simulations from the suite of US155

models that were used in CMIP3 (Meehl et al. 2007) as a baseline for the changes seen in later156

CMIP iterations.157

In addition to the CMIP models, we also consider an ensemble of ten free-running integrations158

produced by the NASA Global Modeling and Assimilation Office (GMAO) using GEOS Version-159

5 (GEOS-5, Molod et al. (2015)) and an ensemble of forecasts from two operational sub-seasonal160

forecasting modeling groups: the GMAO sub-seasonal 45-day long forecasts (Molod et al. 2020)161

and the Global Environmental Forecast System (GEFS) SubX forecasts from the National Centers162

for Environmental Prediction (NCEP) (Zhu et al. 2018). The GMAO forecasts are fully coupled,163

whereas the GEFS are uncoupled.164

While each modeling center has different development targets, we note a few relevant develop-165

ments common to models considered in this study. First, most models, particularly those partic-166

ipating in CMIP6, have increased the height of the model top, as well as the vertical resolution.167

This appears to play a critical role in the fidelity of the QBO (Geller et al. 2016, see Section168

3d). Second, there have been improvements to the models’ representation of gravity wave drag,169

which in turn have also improved simulation of the QBO. This has come by way of improved170
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parameterizations (e.g., CESM2(WACCM2), GISS E2.2, CM4) and improved tuning of current171

parameterizations (e.g. E3SMv1-MODGW). Third, the treatment of shallow convection has im-172

proved in E3SM, CESM2, GISS E2.1, and CM4 including new parameterizations and tunings.173

These improvements positively impact the simulated MJO (Section 3a).174

The specific experiments submitted by each modeling center are summarized in Table 3. For175

most of the CMIP models, some number of ensemble members of the “Historical” experiment are176

analyzed. For the GMAO ensemble (hereafter M2AMIP) we have considered a ten-member en-177

semble of AMIP simulations initialized from meteorological fields from different dates in Novem-178

ber 1979 using identical sea-surface temperatures and sea-ice concentrations. The 45-day NASA-179

GMAO sub-seasonal forecasts were initialized from the MERRA-2 and GMAO S2S-1.0 ocean180

analysis, respectively. An ensemble of ten forecasts were initialized at 5-day intervals during181

all twelve months of years 1981–2016 but only years after 1999 are considered here in order to182

compare fairly with the NCEP GEFS SubX forecasts, which were only available starting in 1999.183

For the GEFS forecasts, an 11-member ensemble of 35-day-long forecasts was used for all years184

spanning 1999–2016, each of which consists of one control and 10 perturbed members.185

b. Intermediary Model Version Simulations186

We also incorporate analysis of simulations using “intermediary” model versions that were de-187

veloped between CMIP3/5 and CMIP6, as well as after an initial CMIP6 submission. While they188

were not originally designed as individual sensitivity experiments, we have found that these sim-189

ulations contribute towards our understanding of the physical processes responsible for improved190

representations of different modes of variability across models.191

For our analysis of the MJO, we incorporate historical coupled simulations produced using a192

version of GISS ModelE that represents an intermediary model tag between the CMIP5 Model193
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E2 (Schmidt et al. 2014) and the CMIP6 Model E2.1 (Kelley et al. 2020). In this model version194

(hereafter GISS ModelE2MJO) the main differences relative to E2 include: 1) an increase in one of195

the parameterization’s plume entrainment rates and 2) an option to allow for re-evaporation above196

the cloud base. The impact of these changes on AMIP simulations of the MJO was documented197

in Kim et al. (2013).198

In order to identify mechanisms for improved simulations of the QBO we include historical199

simulations produced using a version of E3SMv1 (hereafter E3SMv1-MODGWD) in which the200

parameterized convectively generated gravity waves were altered as described in Richter et al.201

(2019) (hereafter R19). In particular, two changes were made: 1) the convective fraction relating202

the tropospheric heating rate within convective cells to the GCM grid-box averaged heating rate203

was increased from 5% to 8% and 2) the efficiency with which convection generates gravity waves204

was decreased from a default value of 0.4 in E3SMv1 to 0.35 in E3SMv1-MODGWD. R19 showed205

that these two changes have significant impacts on the QBO in that model.206

To further understand the influence of model tuning of clouds in simulating both tropical and207

extra-tropical coupled modes of variability, a sensitivity experiment conducted using CESM2 is208

considered, referred to here as CESM2-gamma. CESM2 utilizes the CLUBB shallow turbulence209

scheme. In CESM2-gamma, only the gamma coefficient, which has been identified as a critical210

parameter for low cloud feedback responses to climate change (Gettelman et al. 2019), is modified211

from the official CESM2 version. Specifically, gamma controls the width of the vertical velocity212

probability distribution function and exercises a strong influence over low-cloud cover.213

c. Analysis Tools and Observational Products214

The observational products and analysis measures we use are summarized in Table 4. In partic-215

ular, the tropical and extra-tropical modes of variability examined in this study are evaluated using216
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both the Climate Variability Diagnostics Package (CVDP, Phillips et al. 2014) and the PCMDI217

Metrics Package (PMP, Gleckler et al. 2016). The extra-tropical modes are evaluated using both218

conventional Empirical Orthogonal Function (EOF) analysis in which, for example, EOF-1 in the219

observations is compared to EOF-1 from each of the models (Stoner et al. 2009; Phillips et al.220

2014). We also utilize the Common Basis Function (CBF) approach, in which model anomalies221

are projected onto the observed EOF to obtain the CBF Principal Component (CBF PC; Lee et al.222

2019). Using the CBF PC the model mode spatial pattern is obtained by regressing the CBF PC223

back onto the model anomalies. We have chosen to utilize both methods given that in the con-224

ventional approach mode swapping may preclude the relevant model mode from being compared225

to the observations. We find, however, that the relative performance of the models is typically226

consistent across the different methodologies, though as reported in Lee et al. (2019), the CBF227

method shows the models tend to appear more skillful, compared to the standard EOF approach.228

The period of analysis for the extra-tropical modes is 1900–2005 for models and observations,229

for which we use both ERA 20th Century Reanalysis (ERA20C, Poli et al. 2016) and the NOAA230

20th Century Reanalysis (20CR, Compo et al. 2008) for years 1900–1978 and ERA Interim (Dee231

et al. 2011) for 1979–present. The one exception is the SAM, which we evaluate over the period232

1956–2005 since there are substantial differences during the earlier part of the 20th century among233

various observed and reanalyzed datasets (Lee et al. 2019). Furthermore, model skill for the extra-234

tropical modes is illustrated using Taylor Diagrams (Taylor 2001), in which the radial distance235

from the origin is the spatial standard deviation normalized by the observed standard deviation.236

The difference between the observed reference and the model statistic is the centered root mean237

square error (RMSE), and the azimuthal angle is the pattern correlation between the model and238

the reference observations. The full suite of Taylor Diagrams across all modes and seasons are too239

numerous to present in the main text but can be found in the online supplemental information.240
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The MJO analysis is predominantly based on diagnostics performed on daily data of precip-241

itation and 850 hPa winds over the period 1999 (for which we begin to have credible gridded242

precipitation observations) up to the present. The procedure follows the metrics described by243

Jiang et al. (2015), which are summarized here for completeness. Lag regressions of precipita-244

tion and zonal winds are obtained by projecting the daily fields to a time varying index of 20-100245

day filtered precipitation along 85–95◦E and 5◦N/S. Time-longitude diagrams of the regression246

fields are obtained by averaging each lag day over latitudes spanning 15◦N/S. Pattern correlations247

with the observations are obtained by correlating the time-longitude diagrams of models analyzed248

herein with precipitation from the 3b42 daily product from Tropical Rainfall Measuring Mission249

(TRMM) (Iguchi et al. 2000) and the 850 hPa zonal winds from ERA-5 (Hersbach and Dee 2016).250

A similar pattern correlation analysis is performed for the wavenumber-frequency representation251

of the fields, in which the signal strength (S) is defined as the ratio of the difference between the252

power spectrum (P) and red spectrum (R) to the power spectrum itself (S = [P−R]/P, where R253

is the red noise spectrum) (Clark et al. 2020). The calculation of the power spectrum follows that254

of Wheeler and Kiladis (1999), and the red noise spectrum follows the procedure of Masunaga255

(2007), following the guidelines outlined by Waliser et al. (2009). The East-West power ratio is256

calculated following the procedure outlined by Sperber and Kim (2012) as the ratio between the257

power spectrum of eastward- and westward-propagating zonal wavenumbers 1-5 and timescales258

between 20–100 days.259

The MJO forecast skill among the two sub-seasonal forecast ensembles is estimated by com-260

paring RMM indices derived from each forecast model with an RMM index obtained from ERA5261

data. The RMM index for ERA5 is obtained following Wheeler and Hendon (2004) as the com-262

bined EOF of OLR, u200 and u850. For each field, the mean and seasonal cycle is removed and263

the fields averaged over the 15◦N/S latitude belt and normalized by its zonally-averaged variance264
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before combining them into a single vector. EOF analysis is then performed on this vector of265

combined fields. The EOFs from ERA5 are projected onto the GEFS and GEOS-S2S OLR, u200266

and u850 anomalies to obtain their respective RMM time series. This method follows those out-267

lined by Gottschalck et al. (2010) and Vitart (2017). Bivariate correlations are calculated for the268

two datasets following the method described by Gottschalck et al. (2010) but extended to include269

correlations corresponding to each calendar month as in Molod et al. (2020). We create subsets270

of the RMM indices for each calendar month, and bivariate correlations are made based on each271

forecast day and calendar month.272

Finally, evaluations of the QBO across the models are based primarily on diagnostics derived273

from zonal and monthly averaged zonal wind output, available for some models only at 10, 30, 50,274

70 and 100 hPa, using the metrics outlined in Schenzinger et al. (2017). (For MERRA-2, M2AMIP275

and the GISS ModelE simulations the native vertical resolution output was used). Comparisons of276

models over the period 1980–2016 are made against MERRA-2, which exhibits a realistic QBO277

compared to observations, both in terms of its zonal winds, mean meridional circulation, and asso-278

ciated ozone changes (Coy et al. 2016). The lack of stratospheric data available at higher temporal279

resolution in the models prevents us from doing as rigorous an evaluation as has been done in the280

recent Stratosphere-Troposphere Processes and their Role in Climate (SPARC) Quasi-Biennial281

Oscillation initiative (QBOi) (Butchart et al. 2018), for which the six-hourly output required to282

both calculate the Transformed Eulerian Mean circulation and compare equatorial wave spectra,283

was available. Nonetheless, the data analyzed here does provide some insight into the state of the284

QBO and its representation across the models considered in this study.285
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3. Results286

In this section we describe the fidelity of each climate mode separately and the improvement (or287

lack thereof) from CMIP3/5 to CMIP6. When improvements are found we also use intermediary288

model version experiments in order to understand the drivers of changes in model performance.289

a. Madden-Julian Oscillation290

The results of our MJO analysis for the U.S. climate models are shown in Figs. 1 and 2. As a291

guideline, in Fig. 2 the closer the individual points in the scatter are to the grey star, the closer the292

simulation is to the observations (here TRMM for precipitation, and ERA-5 for the zonal winds).293

Overall, the five models from CMIP6 considered here exhibit enhanced eastward propagation,294

compared to the CMIP5 models. The amplitudes of the MJO-related winds and precipitation are295

also improved in CMIP6 models relative to observations. When assessing individual models, the296

improvements are still clearer. For example, CESM2 exhibits stronger wind anomalies compared297

to CESM1 as well as more coherent eastward propagation (Fig. 1c and d). Similar results are seen298

for the other models both in terms of precipitation and zonal wind (see Supplementary Material).299

The East-West (EW) power ratio is shown in Figs. 2c,d. When compared to the CMIP5 models,300

the CMIP6 models exhibit an increased EW ratio that compares more closely with observations,301

manifest as a rightward shift in Fig. 2 in both precipitation and wind. To showcase this change in302

signal, Fig. 1a-b compare the signal strength of precipitation between GFDL’s CMIP5 CM3 model303

(Fig. 1a) and CMIP6 CM4 model (Fig. 1b). The darker shading for eastward-propagating zonal304

wavenumbers 1-5 and timescales ranging from 20-100 days is clearly evident in CM4.305

The models considered do not only exhibit a closer agreement with the TRMM measurements306

and ERA5 data, but also show an improved space-time spectrum of all waves. This can be seen307

by considering the y-axis in Fig. 2a-b, which shows the pattern correlation of the signal strength308
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of the individual models with respect to the observations. For the spectrum in precipitation, it is309

clear that all CMIP6 models exhibit an increased correlation relative to their corresponding CMIP5310

versions. A less distinct, but nonetheless positive, improvement is also observed for the spectrum311

of zonal winds.312

For the two subseasonal forecast ensembles analyzed in this study we examine their forecast313

skills by calculating their monthly bivariate correlation coefficients with respect to RMM indices314

derived for ERA5 (Fig. 3). Overall, the GEOS-S2S and GEFS ensembles exhibit qualitatively315

similar correlations. In particular, the correlation in both models decays to 0.5 near forecast day316

20, consistent with the results presented in Pegion et al. (2019) and Kim et al. (2019). When317

analyzing the individual months some differences are observed, however. GEOS-S2S exhibits318

a slower decorrelation time during late boreal summer (JAS), with correlations near 0.4 up to319

40 days during August, consistent with the findings in Molod et al. (2020). On the other hand,320

the decorrelation time is faster during November and February, when correlations are below 0.3321

at forecast day 25. In contrast to the GEOS-S2S forecasts, the GEFS ensemble exhibits similar322

decorrelation times for nearly every month, with the notable exception of late summer (JAS),323

when it decorrelates faster.324

325

Intermediary Model Version Experiments: In order to understand improvements in the repre-326

sentation of the MJO, we include results from an intermediary version of GISS ModelE (denoted327

GISS ModelE2MJO) that represents a development version between the CMIP5 E2 submission328

and the CMIP6 E2.1 submission. This version (yellow squares in Fig. 2) shows significant im-329

provements over the original GISS E2 model as a result of several modifications in the convective330

parameterization (see Section 2b for details) that resulted in a convection scheme that is more sen-331

sitive to environmental relative humidity and a more humid mean state, both of which have been332
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shown to be consistent with improved MJO simulation (Kim et al. 2012; Del Genio et al. 2012).333

This result is also consistent with Zhao et al. (2018a), who show that transient variability in the334

tropics increases when the rate of cumulus lateral mixing and convective rain re-evaporation are335

increased in an entirely different model (GFDL AM4), which suggests that the mechanism for336

MJO improvement demonstrated here is not specific to ModelE.337

b. Extra-tropical Modes338

Collective skill assessments of numerous extra-tropical modes of variability have been discussed339

widely in the literature (i.e. Stoner et al. 2009; Phillips et al. 2014; Lee et al. 2019). Here we340

analyze the SAM (Figs. 4a-b), the NAM (Fig. 4c), the PNA (Fig. 4d), the NAO (Fig. 4e), and the341

PDO (Fig. 4f). Our analysis of the SAM, NAM, NAO and PNA are based on seasonally averaged342

sea-level pressure anomalies, with a focus on the dominant (winter) season, with the exception of343

the SAM, for which we consider the (DJF) summer season as well since its interannual variability344

is nearly identical to that occurring during JJA. For the PDO we use monthly anomalies of sea345

surface temperature.346

For the case of the SAM during JJA (Fig. 5a), in all US models the SAM appears to have been347

better represented in CMIP3, compared to CMIP5 and CMIP6. An evaluation of the SAM during348

DJF (Fig. 5b), however, shows the opposite, with most CMIP6 models outperforming earlier349

MIP versions, with the exception of E3SMv1. Thus, while the SAM exhibits some of the most350

pronounced skill improvement, compared to the other extra-tropical modes, this improvement is351

only realized during DJF and does not apply more generally to other seasons.352

Consideration of the US modelling groups one at a time affords a somewhat clearer indication353

that skill has improved since CMIP3. (Note that, despite its incorporation of major changes in354

physics (Golaz et al. 2019), the E3SMv1 model is included in the discussion among the NCAR355
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models). In particular, for the NAM during DJF, the GFDL models shows improved skill in CMIP6356

compared to previous MIPs (Fig. 5c). For the NCAR and DOE models (not shown), the Taylor357

Diagrams indicate that E3SMv1 and CESM1 perform best, with the remaining CMIP6 models358

tending to be better than the other CMIP5 and CMIP3 model versions. For the GISS models (Fig.359

5d), the CMIP5 version performed best.360

Of the extra-tropical modes analyzed, the PNA exhibits the largest diversity in skill across the361

entire ensemble of MIPs and models (not shown). CMIP3 was especially problematic, with three362

of the models having higher order EOFs with markedly better skill than their corresponding EOF-363

1. This indicates that these models were not properly simulating the hierarchy of observed EOFs364

due to mode swapping. Among the GFDL models (Fig. 5e), the CMIP6 simulations lie closest365

to the 1.0 reference line, indicating that their interannual variability (and thus pattern amplitude)366

is consistent with observations, whereas GFDL-ESM4 has a smaller pattern correlation and larger367

RMSE than GFDL-CM4. For GISS (Fig. 5f), the CMIP5 models performed best, with the CMIP3368

(CMIP6) models underestimating (overestimating) the interannual variability and pattern ampli-369

tude. For the NCAR and DOE models (not shown), E3SMv1 and CESM1(CAM5) model are370

most skillful, with the other CMIP6 models being more skillful than the other CMIP5 or CMIP3371

models.372

Finally, of the modes analyzed, the NAO is best simulated overall with pattern correlations of373

∼ 0.95 and RMSE values less than 0.5 hPa (Fig. 5g). Collectively, CMIP6 has smaller skill374

dispersion than CMIP5 or CMIP3, with models tending to be located closer to the 1.00 reference375

line. For GFDL, CMIP6 is marginally more skillful than the other MIPs, while CMIP6 GISS E2.1-376

G overestimates the pattern amplitude compared to CMIP5 and CMIP3 versions of the model. For377

the NCAR family of models (Fig. 5h), most of the CMIP5 models (especially CESM1(CAM5)378

and E3SMv1), marginally outperform their CMIP6 and CMIP3 counterparts.379
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To summarize: only for the SAM during DJF we do see collective improvement from CMIP3380

to CMIP6 in the representation of extra-tropical coupled modes among all models. Otherwise, the381

inter-model scatter is large, spanning the limited and varied number of ensemble members across382

the MIP generations. Our conclusion is that for the extra-tropical modes the skill improvement383

from CMIP3 to CMIP6 is highly mode and seasonally dependent. Taylor Diagrams for additional384

modes and seasons are available online (See Data Availability).385

386

Sensitivity Experiments: The relevant sensitivity experiment for the extra-tropical atmo-387

spheric modes is the CESM2-gamma historical simulation described in Section 2b. Results for388

this simulation are shown in the panels of Figure 5 that include the family of NCAR models389

(5a-b,g-h). For the most part, the differences between the CESM and CEMS2-gamma compar-390

isons with reference data are nominal, and could possibly be owing to the limited sample (only391

one realization of the CESM2-gamma is included). One exception is the SAM during JJA, for392

which this sensitivity simulation appears to be an outlier in both pattern and amplitude. This393

aside, however, the performance of the extra-tropical atmospheric modes does not appear to be394

clearly sensitive to the gamma coefficient in the CLUBB shallow turbulence scheme as applied in395

CESM2.396

c. Tropical Coupled Modes397

1) EL NIÑO/SOUTHERN OSCILLATION398

Composites of ENSO events are derived from both ERA20C and the CMIP models (Fig. 6)399

using normalized detrended December Nino3.4 timeseries that are smoothed with a binomial filter400

and selected for all years when absolute anomalies exceed one standard deviation (El Niño) and all401

years less than -1 standard deviation (La Niña). Mean model biases (Fig. 6b) indicate a systematic402
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weakness in the ENSO pattern in models as they are negatively correlated with the observed pattern403

of ENSO (Fig. 6a), which is characterized by negative pressure anomalies in the eastern tropical404

Pacific Ocean that extend to higher latitudes over the northeastern Pacific, northern Atlantic, and405

Southern Ocean (Sarachik and Cane 2009) and by positive pressure anomalies over the western406

tropical and subtropical Pacific Ocean. There are also biases arising from a westward displacement407

of simulated anomalies (discussed further below), as evident in the negative biases in the western408

Pacific Ocean and a dipole of biases in the northern Pacific Ocean (b).409

Decomposing the models’ bias patterns using EOFs reveals that the leading EOF, which explains410

a substantial amount of inter-model variance (28%), correlates strongly with the composite pattern411

(Fig. 6c), particularly near the Aleutian Low (Butler et al. 2014). The second EOF, which also412

explains a significant amount of variance (17%), is characterized by negative values in the western413

Pacific Ocean and positive values in the Arctic (Fig. 6d). Negative loadings of both EOFs are414

found in the US CMIP6 models that most closely agree with the observations. In particular,415

the best US model is characterized by a pattern that strongly resembles the observations in both416

hemispheres and all ocean basins, although its spatial variance is somewhat stronger (Fig. 6f). In417

contrast, the model that least agrees with the observations is characterized by weaker than observed418

teleconnections, both within and outside of the tropics, and exhibits large scale teleconnections that419

are opposite in sign to those observed in some regions (i.e., the North Atlantic Ocean) (Fig. 6e).420

The observed transient evolution of El Niño (Fig. 7), shows a gradual warming of the tropical421

Pacific Ocean from the dateline to the western coast of the Americas in Year 0, reaching a peak in422

December near 2K and transitioning on average to cooler than normal conditions of about -0.1K423

one year later. The mean model bias (Fig. 7b) is characterized by warm anomalies that extend424

too far westward (identified previously in Fig. 6b) and occur too late in the seasonal cycle, as425

evidenced by a broad band of positive SST biases in late spring of Year 1. The leading EOF of426
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model bias for the Niño Hovmöller plots (Fig. 7c), which explains a significant fraction of inter-427

model variance (45%), strongly correlates with the observed composite, indicating a systematic428

overestimation by many models of the time-longitude structure.429

The second bias EOF, which explains 18% of the variance, is characterized by strong warm430

anomalies in Year 1, suggesting a failure to adequately transition to La Niña conditions over time431

in some models (Fig. 7d). In the best model (Fig. 7e) and consistent with observations (Fig. 7a),432

anomalies intensify during Year 0, are located primarily east of the dateline with cool anomalies to433

their west, and peak in December, after which they transition rapidly to cold anomalies in spring434

of Year 1. In contrast, in the poorer performing model (Fig. 7f), positive anomalies also grow435

gradually through Year 0 but extend well into Year 1. A large-scale transition to cool Pacific SSTs436

in Year 2 is simulated in the poorer scoring model, but to an extent that is weaker than observed.437

That said, even the poorer scoring CMIP6 US model is considerably more skillful than many other438

models included in the CMIP archives (not shown).439

2) PACIFIC DECADAL OSCILLATION440

The Taylor Diagram of the PDO, derived from the leading EOF of North Pacific (20◦N–70◦N)441

SST anomalies, suggests that the RMSE has been reduced and pattern correlation increased from442

CMIP3 to CMIP5 to CMIP6 (Fig. 8). Among CMIP5 and CMIP6 versions of both the GFDL and443

GISS models, the representation of the PDO has improved and among the NCAR models, CMIP6444

CESM2 has the largest pattern correlation and smallest RMSE values compared to either CMIP5445

or CMIP3 versions. The overall tendency, therefore, is for CMIP6 models to have larger pattern446

correlations and smaller RMSE than their corresponding CMIP3 and CMIP5 versions, a result that447

also holds using the Common Basis Function approach (not shown).448
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Regressions of the principle component timeseries of the PDO against SSTs can be used to449

quantify the global teleconnection patterns associated with the PDO (Phillips et al. 2014), which450

consists of a zonal dipole of anomalies in the North Pacific centered near 40◦N that resembles the451

structure of El Niño (Fig. 9a). As for El Niño, the mean model bias (not shown) negatively corre-452

lates with the observed pattern, which indicates an overall weakness of the PDO in the models. In453

addition, the leading EOF pattern of the inter-model PDO bias (Fig. 9c), which is associated with454

connections between the Northern and Tropical Pacific Ocean, also positively correlates with the455

mean bias across models suggesting that, while on average the simulated PDO connections with456

the Tropics are systematically underestimated, there is also considerable variation across models.457

This last point is especially evident when comparing the PC weightings corresponding to the458

leading EOFs for the CMIP5 and CMIP6 versions of US models (Fig. 9b), where the origin may459

be interpreted as the CMIP mean model bias, and observations are shown in red. In particular, sig-460

nificant improvement from CMIP5 to CMIP6 model versions is reflected by the relative proximity461

of PC weightings for CMIP6 (closed circles) versus CMIP5 model versions (open circles) to the462

observed range. Most improved is the GISS model (green), which had amongst the most positive463

leading EOF1 PCs in CMIP5, yet in CMIP6 is among the closest to the observed range. Note464

that the reduction of bias in EOF 1 in the US climate models and inconsistent changes in EOF465

2 mirror the more general changes from CMIP5 to CMIP6 seen in other climate models (Fasullo466

et al. 2020).467

To illustrate this improvement directly, the simulated PDO regression patterns are shown for the468

CMIP5 (Fig. 9e) and CMIP6 (Fig. 9f) versions of the GISS model. In CMIP5, significant tele-469

connections were largely confined to the North Pacific Ocean, with minimal structure in the other470

ocean basins and in stark contrast to the observed pattern. In CMIP6, teleconnections to remote471

regions have expanded considerably, particularly in the Tropics, with a strong spatial correlation472
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with those observed, though biases in the tropical meridional structure remain. Correctly resolv-473

ing these teleconnections has broad relevance to associated attribution and prediction applications474

and represents a major step forward, despite some persistence of biases. While the processes that475

contribute to the improvement remains to be understood, it is noteworthy that patterns in the North476

Pacific have not improved dramatically across model versions (Fig. 8), suggesting other origins477

for the teleconnection improvement.478

3) ENSO AND PDO SPECTRA479

Another key property of both ENSO and the PDO is the spectra of their indices, which are480

associated with considerable socio-economic implications related to the frequency, intensity, and481

persistence of drought, floods, and other impacts (Dilley and Heyman 1995). In general, the482

power of simulated ENSO variability is too strong in models except at high frequencies (< 2.5483

years) (Fig. 10a), where many models underestimate the severity of El Niño-La Niña transitions484

(also shown in Fig. 7b). By comparison, between 2.5 and 6 years, all US climate models produce485

on average more power than is observed. In the 6–10 year band, the average observed power486

is reduced from the 2.5–6 year band but remains large, with the E3SM range on par with the487

observed estimates. For periods greater than 10 years, the observed power is, again, less than488

that for 2.5 to 6 year periods and the agreement between the models and observations is closer,489

with the exception of CESM2(CAM6) and CESM2(WACCM6). A systematic increase in power490

from CMIP5 (coincident black lines) to CMIP6 model versions is apparent in all CMIP6 US491

models except CESM, where the Version 1 and Version 2 ranges overlap. The general increase492

in ENSO power across US CMIP6 model versions for periods greater than 2.5 yrs relative to493

their CMIP5 counterparts is consistent with the broader increase in power from CMIP5 to CMIP6494

models overall (Fasullo et al. 2020).495
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Model-observation agreement is generally closer for the PDO spectra (Fig. 10b), compared to496

that for ENSO. Models systematically underestimate the observed estimates in the less than 2.5497

year band, where there is little power; by comparison, in the 2.5–6 year band the models exhibits498

generally good agreement with the observations, albeit with large internal variability. In the 6 to499

10 year band, observational estimates again increase and fall generally within the model ranges,500

with WACCM6 perhaps being biased high, although more ensemble members are needed to more501

accurately represent the ensemble spread in that model. At low frequencies (> 10 years), power502

in the PDO is still larger and good general agreement exists between the observed and simulated503

estimates.504

505

Sensitivity Experiments: As seen in Figure 11, the gamma parameter in the CESM2 sen-506

sitivity experiments exerts an important influence on ENSO teleconnections. The spatial character507

of ENSO-SLP teleconnections (similar to Fig. 6, although here estimated using Nino3.4 re-508

gression) is shown for ERA-20C (Fig. 11a) and for the CESM2-gamma sensitivity experiments509

(Fig. 11b), along with the raw regressions for each model. In CESM2-gamma, many of the510

canonical biases are shown to worsen relative to CESM2 and include a weakening of the overall511

pattern in most locations, manifest as negative anomalies in the northeast Pacific Ocean and North512

Atlantic Ocean. They also include a westward shift of ENSO variance, as evidenced by negative513

differences in the central Pacific Ocean (Fig. 11b). The pattern correlations versus observations514

also decrease for CESM2-gamma (0.88) from those for CESM2 (0.93). Together the biases515

are analogous to PC1 and PC2 in our multi-model analysis (Fig. 6c,d) and demonstrate a basic516

sensitivity of ENSO teleconnections to unobserved cloud parameters that are typically tuned.517
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d. Quasi-Biennial Oscillation518

We evaluate the QBO only among the current (CMIP6) generation of models (Table 1). This is519

because, unlike for the other modes, the QBO was not consistently represented in the majority of520

models participating in previous CMIP intercomparisons (i.e. only 5 of 47 CMIP5 models had any-521

thing resembling a QBO (Butchart et al. 2018)). We also include in our analysis not only historical522

coupled runs but historical AMIP runs that were not included in the previous discussions which, by523

comparison, focused on modes requiring atmosphere-ocean coupling. Specifically, these include524

the results from the GEOS M2AMIP ensemble as well as the GISS E2.2-G AMIP historical runs525

(Table 3).526

1) QBO PERIOD527

The QBO is first depicted in terms of the evolution of the equatorial winds, averaged over 5◦S to528

5◦N, over the course of the observational period 1980–2015 (or up to years for which model output529

was available, depending on the simulation) (Figure 12). MERRA-2 exhibits the characteristic530

oscillating propagation downward of zonal wind anomalies, also featured clearly in all of the other531

models, with the exception of CESM2(CAM6) and GISS E2.1. This is not surprising given that the532

latter models have relatively low vertical resolutions (Table 2). Hereafter, therefore, our focus will533

be on further quantifying various aspects of the QBO in all models exempting CESM2(CAM6)534

and GISS E2.1. We also exclude from our analysis the results from CESM1(WACCM5) since the535

QBO was imposed in that model.536

As in Schenzinger et al. (2017) (hereafter SC17) we begin by calculating the Fourier transform537

of the equatorial zonal mean zonal wind; hmax is then defined as the height at which the sum of538

the squares of the Fourier amplitudes between 26 and 30 months maximizes. For MERRA-2 this539

occurs at 20 hPa which is consistent with the values of hmax quoted in Coy et al. (2016), as well540
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as SC17, albeit for the case of MERRA in the latter. Comparison of hmax among the simulations541

shows good consistency with MERRA-2 to within± 15 hPa, with hmax occurring above 20 hPa for542

some models (i.e. M2AMIP, some members of GISS Model E2.2) and below 20 hPa for others (i.e.543

E3SMv1 and E3SMv1-MOGWD, CESM1-WACCM) (Fig. 13a). The one exception is E3SMv1,544

for which hmax spans 30–50 hPa. While this is somewhat at odds with Bushell et al. (2020), who545

showed that the QBO in the QBOi models is generally shifted upward compared to reanalyses,546

it important to note that we are considering a much smaller ensemble of models compared to547

the 13 models considered in that study. Furthermore, offline comparisons of hmax in MERRA-2548

calculated used the native vertical grid of MERRA-2 (20 hPa) versus the coarser grid at which the549

MoV model output was available (30 hPa) demonstrates that hmax does exhibit some sensitivity550

to vertical resolution. While this implies that some caution needs to be taken when interpreting551

the sense of the MoV models’ bias in hmax, as we discuss below, other measures of the QBO (e.g.552

amplitude, period) are less sensitive.553

Time series of the equatorial zonal winds at hmax are used to identify the time between ev-554

ery other phase peak. For MERRA-2 the average period over all cycles is 28.2 months, with a555

minimum (maximum) period of 22 (36) months (Fig. 13b). This is in excellent agreement with556

equatorial radiosonde-based estimates, which are also slightly above 28 months (Baldwin et al.557

2001). The mean periods in the examined models generally all agree very well with MERRA-2,558

particularly for the M2AMIP ensemble in which the QBO period values for all ten members range559

between 27 months and 29.1 months. By comparison, the QBO period is not as well captured in560

E3SMv1, which features a period that is almost twice as fast as in MERRA-2 for some members.561

We explore this last point further by contrasting the results from E3SMv1 with those from562

E3SMv1-MODGWD. In response to two separate changes to the convective GWD – both with563

respect to the amplitude of the momentum flux phase speed spectra (which in that model is pro-564
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portional to a tunable convective fraction per GCM grid cell) and the efficiency with which con-565

vection generates gravity waves – there is a significant improvement in the QBO period exhibited566

in E3SMv1-MODGWD (Fig. 13b). Given that R19 tuned that simulation to obtain a credible QBO567

period this result is not surprising. Nonetheless, it is consistent in spirit with the development deci-568

sions that were made in tuning similar aspects of the convective component of the non-orographic569

gravity wave drag scheme in GISS E2.2 (Rind et al. 2020) and in previous versions of that model570

(Rind et al. 2014) (hereafter RJ14).571

2) QBO AMPLITUDE572

Compared to the QBO period in MERRA-2 the models considered here exhibit more disagree-573

ment in terms of the amplitude of the QBO (Fig. 13c), which likely reflects the priorities governing574

how GWD schemes are tuned in models (i.e. to first produce a credible period and, thereafter, other575

aspects of the QBO). The best agreement with MERRA-2, in which the amplitude is∼45 m s−1, is576

exhibited by GISS E2.2 and M2AMIP; by comparison, in nearly all the other models the amplitude577

of the QBO is underestimated, consistent with the QBOi models (Bushell et al. 2020). Further de-578

composition of the QBO amplitude into easterly and westerly components (Figure 13, d-g) shows579

that this low amplitude bias among the models is most often associated with an underestimate of580

the easterly component of the QBO (Fig. 13, d-e). By comparison the amplitude of the westerly581

phase of the QBO is better represented in the models (Fig. 13, f-g).582

It is interesting to ask if the differences in QBO amplitude exhibited among the models in583

the historical runs compare in magnitude to the differences in forecast skill among the two584

sub-seasonal forecast ensembles considered in this study. Figure 14 compares RMSE values in the585

equatorial zonal winds between the GEOS-S2S and NOAA GEFS ensemble forecasts, relative to586

MERRA-2. With the exception of 100 hPa, where GEFS performs slightly better, the S2S forecast587
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errors are smaller throughout the stratosphere, especially above 30 hPa. Comparisons of the588

vertical resolution and model top of GEFS with the underlying GEOS GCM used to produce the589

S2S forecasts indicates that the GEFS top is lower (0.2 hPa vs. 0.01 hPa) and has fewer vertical590

levels, with less distribution in the lower stratosphere/upper troposphere (Table 2). At the same591

time, other factors may also contribute to the differences, including the fact that the stochastic592

perturbation that is applied to each GEFS forecast member varies with height. In particular, in the593

stratosphere the weight of the stochastic perturbation decreases from 1 at 100 hPa to 0 at pressures594

at and above 25 hPa, which could contribute to the variable performance of the GEFS ensemble595

mean forecast at different stratospheric levels. This, in addition to the use of MERRA-2 as our596

reference against which all RMSE values have been calculated, may provide additional reasons597

for the relatively weaker QBO skill in the GEFS forecasts. Therefore, while the vertical resolution598

and model top differences between the models are consistent with the sources driving differences599

in model performance among the historical runs, more investigation is needed to understand600

how (if) skill on the climatic timescales relevant to CMIP translates to sub-seasonal timescales601

in any meaningful way. A more rigorous and in-depth presentation of the state of the QBO in602

the GEOS-S2S forecasts is currently in preparation and soon to be submitted for publication603

(personal communication with Dr. Lawrence Coy (NASA, Global Modeling Assimilation Office)).604

605

Intermediary Model Version Experiments: Comparisons between pairs of models show that606

the QBO period depends sensitively on which aspects of the non-orographic gravity wave drag607

are altered. In particular, comparisons of GISS E2.1 versus E2.2 and E3SMv1 versus E3SMv1-608

MODGWD, in which changes in the efficiency with which convection generates gravity waves609

were made in both cases, resulted in significant improvements in the QBO period, relative to610

MERRA-2.611
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By comparison, our analysis does not reveal any systematic changes that clearly improve the rep-612

resentation of the amplitude of the QBO. In particular, the QBO amplitude in E3SMv1-MODGWD613

is approximately the same as in E3SMv1 (Fig. 13c), albeit with some differences, depending on614

QBO phase (Fig. 13d). This can also be seen in the perhaps surprising result that, despite their good615

representation of the overall mean QBO amplitude, all M2AMIP members consistently underes-616

timate (overestimate) the easterly (westerly) QBO amplitude (Fig. 13d,e(f,g)). This is interesting617

because the M2AMIP ensemble was generated using the exact same version of GEOS that was618

used to produce MERRA-2. This demonstrates that, while changes in the non-orographic GWD619

parameterizations may suffice in terms of improving aspects like QBO period, they may not be620

sufficient for constraining other aspects like QBO amplitude. For that, assimilation of observed621

fields (as in MERRA-2) can counteract underlying free-running biases in the models (Geller et al.622

2016).623

4. Discussion624

We have presented a comprehensive assessment of the performance of US climate models with625

respect to multiple modes of variability. Overall, we show that for many modes (though not all),626

improvements in model skill over time are impressive and a testament to the improvements in627

the representation of key processes. In addition to improved representations of the MJO and QBO628

(which have been reported in previous studies (Kim et al. 2013; Rind et al. 2014; Danabasoglu et al.629

2020)), the overall improvement in ENSO and the PDO in recent CMIP6 models is remarkable630

(Figs. 15a,b). At the same time, however, there is no clear improvement in the representation of631

the NAM and possible degradation of skill in the SAM (Figs. 15c,d), although the correlations632

were very high already.633

28

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0956.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-19-0956.1/4961729/jclid190956.pdf by LAW
R

EN
C

E LIVER
M

O
R

E LAB. user on 02 July 2020



We can distinguish between two kinds of improvement exhibited among most of the modes con-634

sidered in this study: those that rely on a threshold of model representation that is crossed at a dis-635

tinct moment in model development, and improvements that rely on more gradual, collective im-636

provements in processes. As an example of the first, the ability of GISS E2.2, CESM2(WACCM6)637

and E3SMv1-MODGWD to produce a realistic QBO signal is predominantly a function of in-638

creased vertical resolution in the lower stratosphere and sufficiently complex spectra of parame-639

terized gravity waves that are tied to the underlying physics in the models (e.g. convection, shear).640

Models without either do not have a QBO worth discussing, while those with have at least the641

possibility of being able to tune for a realistic amplitude and period. In this latter group, the QBO642

period is much easier to tune than the amplitude (Geller et al. 2016), which is consistently un-643

derestimated. While data assimilation can remedy this bias (evident in comparing M2AMIP with644

MERRA-2), it remains a challenge for future development.645

Improvement in the simulation of coupled and extra-tropical modes falls into the second cate-646

gory of model improvement, likely being attributed to gradual improvement of the base climate647

and a range of relevant processes. Evidence of improved fidelity across generations is apparent in648

some cases (e.g., the amplitude of the SAM in DJF), but less clear in others (NAM, NAO, PNA, the649

SAM during JJA). While the limited and varied number of samples hamper definitive statements650

that can be generalized across models, our analysis nevertheless suggests that progress has been651

made in some areas, most notably for ENSO and the PDO. Improvements seen in the MJO are652

also an example of this latter approach, although the improvements are much clearer, compared653

to the extra-tropical modes. The drivers of these improvements also appear to be much better654

understood and related to consistent approaches to treating rain re-evaporation within convective655

parameterizations.656
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Finally, while the results from our analysis suggests a clear progression in model fidelity in a657

climate context, it is not clear how (if) this improved performance translates to skill in subseasonal658

forecasting. Our limited analysis comparing two subseasonal forecast groups suggests that the659

factors contributing to improved QBO performance in the climate context may also improve skill660

on subseasonal timescales. Owing, however, to the limited number of subseasonal models consid-661

ered in this study, our analysis is not conclusive. As more forecast systems become available in662

parallel with new CMIP6 models, however, it will become easier to address this question.663

5. Data Availability664

All CMIP simulations are available through the Earth System Grid Federation (ESGF).665

In addition, all intermediary and sensitivity experiments as well as supplementary figures666

are publicly available. Specifically, the MJO and QBO data can be found at https://667

portal.nccs.nasa.gov/datashare/GISS_MOV/. The summary data for the CESM simula-668

tions is available at ftp://ftp.cgd.ucar.edu/archive/andrew/cesm2ecs while raw model669

output can be found at: https://doi.org/10.26024/zrad-5z41. CESM1 and CESM2670

code bases are available via links from http://www.cesm.ucar.edu/models/. The anal-671

ysis codes used for the extra-tropical modes are available via PMPv1.2 https://github.672

com/PCMDI/pcmdi_metrics. Taylor Diagrams for additional modes and seasons are available673

online at https://pcmdi.llnl.gov/pmp-preliminary-results/variability_modes/US_674

models_taylor_diagrams. The M2AMIP GMAO ensembles can be accessed at https://675

portal.nccs.nasa.gov/datashare/gmao_m2amip/, while a subset of the GEOS S2S data an-676

alyzed in this manuscript is available at https://gmao.gsfc.nasa.gov/gmaoftp/gmaofcst/677

subx/GEOS_S2S_V2.1/. The GEFS SubX output is available via the IRI Data Library http:678
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//iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/ (doi: https://dx.doi.org/10.679

7916/D8PG249H).680
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LIST OF FIGURES968

Fig. 1. Top: Signal strength of precipitation for (a) CM3 and (b) CM4. The solid lines in (a) and (b)969

correspond to the dispersion curves of the equatorial wave solutions for equivalent depths970

of 12 m and 90 m, respectively. The dashed lines correspond to constant phase speeds of 7971

m s−1 and 11 m s−1. Bottom: Time-longitude diagrams of zonal winds at 850 hPa (u850)972

averaged over 15◦N/S for CESM1(CAM5) and CESM2(CAM6). . . . . . . . . 51973

Fig. 2. Top: Scatter plots of pattern correlation (x-axis) versus relative precipitation amplitude (y-974

axis) (top panels) and east-west ratio (x-axis) versus the pattern correlation of the signal975

strength (y-axis) (bottom panels) for CMIP6 versions of the models considered in this study976

(blue), CMIP5 models (green), and the intermediate GISS model (yellow). The different977

shapes correspond to the model center: the GFDL models are shown as circles, GISS is978

shown as squares, NCAR’s CESM-CAM is shown as an upward-pointed triangle while979

CESM-WACCM is shown as a rightward-pointed triangle. E3SM is denoted by the leftward-980

pointed (blue) triangle. . . . . . . . . . . . . . . . . . . . . 52981

Fig. 3. Bivariate anomaly correlation of the RMM indices from ERA5 and ensemble means from982

(a) NOAA GEFS and (b) GEOS-S2S as a function of forecast lead day and the month of983

initialization of the forecast. The dashed line at day 35corresponds to the longest lead time984

in the GEFS dataset, while the line at day 20 is shown for reference. Note that the January985

is shown in the top and bottom to elucidate the wintertime variability in each model more986

clearly. . . . . . . . . . . . . . . . . . . . . . . . . 53987

Fig. 4. Observed modes (EOF-1) of sea-level pressure variability for the (a) Southern Annular988

Mode (SAM) during JJA, (b) the SAM during DJF, (c) the Northern Annular Mode (NAM)989

during DJF, (d) the Pacific-North American Pattern (PNA) during DJF and (e) the North990

Atlantic Oscillation (NAO) during DJF, based on anomalies from the 20th Century Reanal-991

ysis (20CR). Monthly sea surface temperature anomalies from HadISSTv1.1 are used for992

the Pacific Decadal Oscillation (PDO) (f). Maps show the positive phases of the individual993

modes and the percentage of total variance (%) explained by the EOF is noted at the top of994

each plot. . . . . . . . . . . . . . . . . . . . . . . . 54995

Fig. 5. Taylor Diagrams illustrating model skill for the SAM for all models during (a) JJA and (b)996

DJF; skill for the NAM during DJF is shown in (c) and (d) for GFDL and GISS models, re-997

spectively. Red, green and blue represent CMIP3, CMIP5 and CMIP6 generations of the US998

models, respectively. The black squares on all abscissa represent the observationally-based999

references used for evaluating skill. Larger symbols represent statistics averaged across1000

multiple realizations for a given model, with the number of realizations shown in parenthe-1001

sis after model labels in the legend. Smaller symbols in the panels indicate results from1002

individual realizations. . . . . . . . . . . . . . . . . . . . . 551003

Fig. 5. (cont) As above, but for the PNA for (e) GFDL and (f) GISS model versions. The NAO for1004

boreal winter is shown for all models in (g) and the NCAR subset of models in (h). . . . . 561005

Fig. 6. Composites of DJF sea level pressure for El Niño minus La Niña in observations (A, 1920–1006

2017, see methods) and the mean bias for climate model simulations (from 1900) in the1007

CMIP archives (B, units of hPa). Zonal mean values are also indicated over ocean (blue),1008

land (red), and combined (black). The first (C) and second (D) EOFs of model bias are also1009

shown to illustrate the leading patterns that distinguish simulated modes. The US CMIP61010

simulations with the (E) least and (F) greatest difference in EOFs 1 and 2 from observations1011

are also shown. . . . . . . . . . . . . . . . . . . . . . . 571012
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Fig. 7. Hovmöller diagram of surface temperature anomalies during El Niño events (as defined in1013

main text) based on an observational estimate (A, Berkeley Earth, 1920–2017; Rohde et al.1014

(2013)) and the mean CMIP model bias (B, since 1900). The leading patterns differentiating1015

models are shown in C) EOF1 and D) EOF2 and the US CMIP6 simulations with the (E)1016

least and (F) greatest difference in EOFs 1 and 2 from observations are also shown. . . . . 581017

Fig. 8. As in Fig. 5 but for the Pacific Decadal Oscillation for all models. . . . . . . . . 591018

Fig. 9. A) Spatial pattern of the observed Pacific Decadal Oscillation based on NOAAs ERSSTv51019

(1920–2017) and its zonal mean structure (blue line). Evolving values of the principle com-1020

ponents of mode bias across US climate models (colors, from 1920) relative to other CMIP1021

simulations (grey) and observations (red) (B). Note that open circles denote CMIP5 ver-1022

sions and large (small) closed circles denote CMIP6 (CMIP3) versions. The structure of the1023

leading bias EOF (C) and second EOF (D) are also shown along with the PDO patterns in1024

CMIP5 and CMIP6 versions of the GISS model. Red symbols in (B) denote the PC val-1025

ues for observations (ERSSTv5 and HadISST-dark red) and estimated 2σ range of internal1026

variability based on the CESM Large Ensemble. . . . . . . . . . . . . . 601027

Fig. 10. Power of major coupled modes of variability in US climate models including A) Nino3.41028

SSTa and B) the PDO timeseries across various bands. Thick lines indicate the interquartile1029

range and thin lines indicate the full ensemble range for each model where at least 5 sim-1030

ulations are available while asterisks denote values for individual members of other mod-1031

els. Also shown are observed estimates from the Hadley Centre (black circle) and NOAA1032

ERSSTv5 SSTa products. Analogous ranges for the corresponding CMIP5 model versions1033

(i.e. from the same center) are shown in thinner black lines. . . . . . . . . . . 611034

Fig. 11. A) Regression between SLP and Nino3.4 SSTa for observations (ERA20C, 1920–2017) and1035

B) the difference between the same regressions for CESM2 (regression is shown in C) and1036

CESM2-gamma (regression shown in D, 1900-2005). The difference field (B) has been1037

multiplied by two in order to use one common color bar. . . . . . . . . . . . 621038

Fig. 12. Evolution of the equatorial (5◦S-5◦N averaged) zonal mean zonal winds for the various1039

models considered for QBO evaluation. MERRA-2 (a) is treated as the reference against1040

which the GEOS M2AMIP, CESM1(WACCM5), CESM2(WACCM6), CESM2(CAM6),1041

GISS E2.1, GISS E2.2, E3SMv1 and E3SMv1-MODGWD are compared. For models pro-1042

viding ensembles only one member is shown in order to avoid averaging over (phase-lagged)1043

oscillations among different members. . . . . . . . . . . . . . . . . 631044

Fig. 13. Comparison of different measures of the QBO ranging from (a) hmax, the pressure at which1045

the squared Fourier amplitudes ranging from 26–30 months of the equatorial zonal mean1046

winds maximizes, (b) the mean QBO period, (c) the mean QBO amplitude, (d,e) the1047

maximum (minimum) QBO amplitude occurring during the easterly phase of the QBO1048

and (f,g) the maximum (minimum) QBO amplitude occurring during the westerly phase.1049

Small (large) circles denote individual ensemble members (ensemble means) while lines1050

span the ensemble range. Note that the results for CESM2(CAM6), GISS E2.1 and1051

CESM1(WACCM5) are not shown since the first two models do not simulate a QBO and1052

the QBO is prescribed in the latter . . . . . . . . . . . . . . . . . 641053

Fig. 14. Root mean square error (RMSE) of the equatorial (5◦S-5◦N) zonally averaged zonal winds,1054

compared between the 45-day-long GEOS-S2S and 35-day-long NOAA GEFS subseasonal1055

forecasts and evaluated relative to MERRA-2. RMSE values have been calculated using the1056

ensemble mean values over the entire course of the forecasts (up to 35 days for both GEFS1057
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and S2S), for all months and years within the climatological period 2000–2010. Horizontal1058

bars denote the spread in error associated with both seasonal and interannual variations. . . 651059

Fig. 15. Summary of correlations across the CMIP3/5/6 model ensembles (each simulation is1060

weighted equally, with the number of simulations given in the legend) for the US mod-1061

els relative to observations for the a) El Niño Southern Oscillation (surface temperatures),1062

b) the Pacific Decadal Oscillation (SLP), c) the Northern Annular Mode (SLP), and d) the1063

Southern Annular Mode (SLP). . . . . . . . . . . . . . . . . . 661064
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FIG. 1: Top: Signal strength of precipitation for (a) CM3 and (b) CM4. The solid lines in (a) and
(b) correspond to the dispersion curves of the equatorial wave solutions for equivalent depths of
12 m and 90 m, respectively. The dashed lines correspond to constant phase speeds of 7 m s−1

and 11 m s−1. Bottom: Time-longitude diagrams of zonal winds at 850 hPa (u850) averaged over
15◦N/S for CESM1(CAM5) and CESM2(CAM6).
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FIG. 2: Top: Scatter plots of pattern correlation (x-axis) versus relative precipitation amplitude (y-
axis) (top panels) and east-west ratio (x-axis) versus the pattern correlation of the signal strength
(y-axis) (bottom panels) for CMIP6 versions of the models considered in this study (blue), CMIP5
models (green), and the intermediate GISS model (yellow). The different shapes correspond to the
model center: the GFDL models are shown as circles, GISS is shown as squares, NCAR’s CESM-
CAM is shown as an upward-pointed triangle while CESM-WACCM is shown as a rightward-
pointed triangle. E3SM is denoted by the leftward-pointed (blue) triangle.
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FIG. 3: Bivariate anomaly correlation of the RMM indices from ERA5 and ensemble means from
(a) NOAA GEFS and (b) GEOS-S2S as a function of forecast lead day and the month of initial-
ization of the forecast. The dashed line at day 35corresponds to the longest lead time in the GEFS
dataset, while the line at day 20 is shown for reference. Note that the January is shown in the top
and bottom to elucidate the wintertime variability in each model more clearly.
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FIG. 4: Observed modes (EOF-1) of sea-level pressure variability for the (a) Southern Annular
Mode (SAM) during JJA, (b) the SAM during DJF, (c) the Northern Annular Mode (NAM) during
DJF, (d) the Pacific-North American Pattern (PNA) during DJF and (e) the North Atlantic Oscil-
lation (NAO) during DJF, based on anomalies from the 20th Century Reanalysis (20CR). Monthly
sea surface temperature anomalies from HadISSTv1.1 are used for the Pacific Decadal Oscillation
(PDO) (f). Maps show the positive phases of the individual modes and the percentage of total
variance (%) explained by the EOF is noted at the top of each plot.
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FIG. 5: Taylor Diagrams illustrating model skill for the SAM for all models during (a) JJA and (b)
DJF; skill for the NAM during DJF is shown in (c) and (d) for GFDL and GISS models, respec-
tively. Red, green and blue represent CMIP3, CMIP5 and CMIP6 generations of the US models,
respectively. The black squares on all abscissa represent the observationally-based references used
for evaluating skill. Larger symbols represent statistics averaged across multiple realizations for a
given model, with the number of realizations shown in parenthesis after model labels in the legend.
Smaller symbols in the panels indicate results from individual realizations.
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FIG. 5: (cont) As above, but for the PNA for (e) GFDL and (f) GISS model versions. The NAO
for boreal winter is shown for all models in (g) and the NCAR subset of models in (h).
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FIG. 6: Composites of DJF sea level pressure for El Niño minus La Niña in observations (A,
1920–2017, see methods) and the mean bias for climate model simulations (from 1900) in the
CMIP archives (B, units of hPa). Zonal mean values are also indicated over ocean (blue), land
(red), and combined (black). The first (C) and second (D) EOFs of model bias are also shown to
illustrate the leading patterns that distinguish simulated modes. The US CMIP6 simulations with
the (E) least and (F) greatest difference in EOFs 1 and 2 from observations are also shown.
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FIG. 7: Hovmöller diagram of surface temperature anomalies during El Niño events (as defined in
main text) based on an observational estimate (A, Berkeley Earth, 1920–2017; Rohde et al. (2013))
and the mean CMIP model bias (B, since 1900). The leading patterns differentiating models are
shown in C) EOF1 and D) EOF2 and the US CMIP6 simulations with the (E) least and (F) greatest
difference in EOFs 1 and 2 from observations are also shown.
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FIG. 8: As in Fig. 5 but for the Pacific Decadal Oscillation for all models.

60

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0956.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-19-0956.1/4961729/jclid190956.pdf by LAW
R

EN
C

E LIVER
M

O
R

E LAB. user on 02 July 2020



FIG. 9: A) Spatial pattern of the observed Pacific Decadal Oscillation based on NOAAs ERSSTv5
(1920–2017) and its zonal mean structure (blue line). Evolving values of the principle components
of mode bias across US climate models (colors, from 1920) relative to other CMIP simulations
(grey) and observations (red) (B). Note that open circles denote CMIP5 versions and large (small)
closed circles denote CMIP6 (CMIP3) versions. The structure of the leading bias EOF (C) and
second EOF (D) are also shown along with the PDO patterns in CMIP5 and CMIP6 versions of the
GISS model. Red symbols in (B) denote the PC values for observations (ERSSTv5 and HadISST-
dark red) and estimated 2σ range of internal variability based on the CESM Large Ensemble.
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FIG. 10: Power of major coupled modes of variability in US climate models including A) Nino3.4
SSTa and B) the PDO timeseries across various bands. Thick lines indicate the interquartile range
and thin lines indicate the full ensemble range for each model where at least 5 simulations are
available while asterisks denote values for individual members of other models. Also shown are
observed estimates from the Hadley Centre (black circle) and NOAA ERSSTv5 SSTa products.
Analogous ranges for the corresponding CMIP5 model versions (i.e. from the same center) are
shown in thinner black lines.
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FIG. 11: A) Regression between SLP and Nino3.4 SSTa for observations (ERA20C, 1920–2017)
and B) the difference between the same regressions for CESM2 (regression is shown in C) and
CESM2-gamma (regression shown in D, 1900-2005). The difference field (B) has been multiplied
by two in order to use one common color bar.

63

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0956.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-19-0956.1/4961729/jclid190956.pdf by LAW
R

EN
C

E LIVER
M

O
R

E LAB. user on 02 July 2020



FIG. 12: Evolution of the equatorial (5◦S-5◦N averaged) zonal mean zonal winds for the various
models considered for QBO evaluation. MERRA-2 (a) is treated as the reference against which the
GEOS M2AMIP, CESM1(WACCM5), CESM2(WACCM6), CESM2(CAM6), GISS E2.1, GISS
E2.2, E3SMv1 and E3SMv1-MODGWD are compared. For models providing ensembles only
one member is shown in order to avoid averaging over (phase-lagged) oscillations among different
members.
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FIG. 13: Comparison of different measures of the QBO ranging from (a) hmax, the pressure at
which the squared Fourier amplitudes ranging from 26–30 months of the equatorial zonal mean
winds maximizes, (b) the mean QBO period, (c) the mean QBO amplitude, (d,e) the maximum
(minimum) QBO amplitude occurring during the easterly phase of the QBO and (f,g) the maxi-
mum (minimum) QBO amplitude occurring during the westerly phase. Small (large) circles denote
individual ensemble members (ensemble means) while lines span the ensemble range. Note that
the results for CESM2(CAM6), GISS E2.1 and CESM1(WACCM5) are not shown since the first
two models do not simulate a QBO and the QBO is prescribed in the latter
.
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FIG. 14: Root mean square error (RMSE) of the equatorial (5◦S-5◦N) zonally averaged zonal
winds, compared between the 45-day-long GEOS-S2S and 35-day-long NOAA GEFS subsea-
sonal forecasts and evaluated relative to MERRA-2. RMSE values have been calculated using
the ensemble mean values over the entire course of the forecasts (up to 35 days for both GEFS
and S2S), for all months and years within the climatological period 2000–2010. Horizontal bars
denote the spread in error associated with both seasonal and interannual variations.
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FIG. 15: Summary of correlations across the CMIP3/5/6 model ensembles (each simulation is
weighted equally, with the number of simulations given in the legend) for the US models relative to
observations for the a) El Niño Southern Oscillation (surface temperatures), b) the Pacific Decadal
Oscillation (SLP), c) the Northern Annular Mode (SLP), and d) the Southern Annular Mode (SLP).
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